A wave-bending structure at Ka-band using 3D-printed metamaterial

作者:Wu Junqiang; Liang Min; Xin Hao
来源:Journal of Applied Physics, 2018, 123(12): 124109.
DOI:10.1063/1.5003847

摘要

Three-dimensional printing technologies enable metamaterials of complex structures with arbitrary inhomogeneity. In this work, a 90 degrees wave-bending structure at the Ka-band (26.5-40 GHz) based on 3D-printed metamaterials is designed, fabricated, and measured. The wave-bending effect is realized through a spatial distribution of varied effective dielectric constants. Based on the effective medium theory, different effective dielectric constants are accomplished by special, 3D-printable unit cells, which allow different ratios of dielectric to air at the unit cell level. In contrast to traditional, metallic-structure-included metamaterial designs, the reported wave-bending structure here is all dielectric and implemented by the polymer-jetting technique, which features rapid, low-cost, and convenient prototyping. Both simulation and experiment results demonstrate the effectiveness of the wave-bending structure. Published by AIP Publishing.

  • 出版日期2018-3-28