摘要

Observations of leaf number accumulation rate (LNAR) and light integrals (DLI) were used to develop a predictive model for time to flower for a novel hybrid of Limonium sinuatum (L.) Mill. x Limonium perezii (Stapf) Hubb. Plants were established in a temperature-controlled greenhouse at seven planting times from fall to late spring. Long days were maintained using daylength extension lighting. Two light regimes, full sun or 50% shade, were also used. DLI was highly correlated with the time to appearance of the first visible flower bud, explaining in excess of 80% of the variation. When combined with plant growth variables describing either LNAR or rates of increase in groundcover index, a second model was able to predict the date of first visible flowers and accounted for more variation than DLI alone. Daily average temperature (DAT) did not significantly contribute to variation in time to first visible flower because temperatures were uniform between successive plantings at 18 to 21.7 degrees C. However, DAT was significant for the period from visible flower through to flower harvest maturity. Growers of these hybrids for cut flowers can therefore use historical records of DLI to determine planting dates to schedule flowering. Once planting has occurred, by measuring actual DLI, DAT, and leaf number per plant, growers can use the second model to more accurately predict the dates for visible flowers and flower harvest.

  • 出版日期2010-10