摘要

The VI-Ts diagram determined by the scatter points of the vegetation index (VI) and surface temperature (Ts) has been widely applied in land surface studies. In the VI-Ts diagram, dry point is defined as a pixel with maximum Ts and minimum VI, while wet point is defined as a pixel with minimum Ts and maximum VI. If both dry and wet points can be obtained simultaneously, a triangular VI-Ts diagram can be readily defined. However, traditional methods cannot define an ideal VI-Ts diagram if there are no full ranges of land surface moisture and VI, such as during rainy season or in a period with a narrow VI range. In this study, a new method was proposed to define the VI-Ts diagram based on the subpixel vegetation and soil information, which was independent of the full ranges of land surface moisture and VI. In this method, a simple approach was firstly proposed to decompose Ts of a given pixel into two components, the surface temperatures of soil (T(soil)) and vegetation (T(veg)), by means of Ts and VI information of neighboring pixels. The minimum T(veg) and maximum T(soil) were then used to determine the wet and dry points respectively within a given sampling This method was tested over a 30 km x 30 km semiarid agricultural area in the North China Plain through 2003 using Advanced Spaceborne Thermal Emission Reflection Radiometer (ASTER) and MODerate-resolution Imaging Spectroradiometer (MODIS) data. The wet and dry points obtained from our proposed method and from a traditional method were compared with those obtained from ground data within the sampling window with the 30 km x 30 km size. Results show that T(soil) and T(veg) can be obtained with acceptable accuracies, and that our proposed method can define reasonable VI-Ts diagrams over a semiarid agricultural region throughout the whole year, even for both cases of rainy season and narrow range of VI.