摘要

This paper proposes an efficient architecture of HEVC in-loop filters (ILFs) with the target of providing effective multicore utilization for ultra-high definition video applications. While HEVC allows for a high level of parallelization, the issue of data dependencies at the ILF leads to inefficient parallel processing performance. The novel memory organization and management techniques address the data dependence-related issues between multiple processing units and enable to filter the flexible area on multicore decoder. In addition, we introduce the adaptive deblocking filtering order (ADFO) to minimize the impact of bus congestion when multiple cores intemperate for processing very large data. Furthermore, we design the deblocking filter with skip mode pipelining to achieve the high performance minimizing the increased cost and the power consumption. For SAO, we apply the window-based parallel SAO filtering scheme. The resource sharing is considered throughout the entire architecture. Based on both experimental and analytical results, our proposed design can achieve more than 1.31 Gpixels/s and less than 2.6 Gpixels/s at maximum frequency 660 MHz in single core, and consumes 56.2 Kgates including 10.6 Kgates for memory management architecture, which supports multicore decoder, and about 20.8 mW power on average when synthesizing with the 28 nm CMOS library. Moreover, the skip modes of DF improve both the performance and the power dissipation. The ADFO improves the performance of similar to 9.17% when decoding 8 K sequence on octacore at 400 MHz frequency. TpG (Throughput per Cate) is the highest among the related works.

  • 出版日期2018-4