Adipogenic RNAs are transferred in osteoblasts via bone marrow adipocytes-derived extracellular vesicles (EVs)

作者:Martin Perrine J*; Haren Nathalie; Ghali Olfa; Clabaut Aline; Chauveau Christophe; Hardouin Pierre; Broux Odile
来源:BMC Cell Biology, 2015, 16(1): 10.
DOI:10.1186/s12860-015-0057-5

摘要

Background: In osteoporosis, bone loss is accompanied by increased marrow adiposity. Given their proximity in the bone marrow and their shared origin, a dialogue between adipocytes and osteoblasts could be a factor in the competition between human Mesenchymal Stem Cells (hMSC) differentiation routes, leading to adipocyte differentiation at the expense of osteoblast differentiation. The adipocyte/osteoblast balance is highly regulated at the level of gene transcription. In our work, we focused on PPARgamma, CEBPalpha and CEBPdelta, as these transcription factors are seen as master regulators of adipogenesis and expressed precociously, and on leptin and adiponectin, considered as adipocyte marker genes. In 2010, our group has demonstrated, thanks to a coculture model, that in the presence of hMSC-derived adipocytes (hMSC-Adi), hMSC-derived osteoblasts (hMSC-Ost) express lesser amounts of osteogenic markers but exhibit the expression of typical adipogenic genes. Nevertheless, the mechanisms underlying this modulation of gene expression are not clarified. Recently, adipocytes were described as releasing extracellular vesicles (EVs), containing and transferring adipocyte specific transcripts, like PPARgamma, leptin and adiponectin. Here, we investigated whether EVs could be the way in which adipocytes transfer adipogenic RNAs in our coculture model. Results: We observed in hMSC-Ost incubated in hAdi-CM an increase in the adipogenic PPAR., leptin, CEBPa and CEBP delta transcripts as well as the anti-osteoblastic miR-138, miR30c, miR125a, miR-125b, miR-31 miRNAs, probably implicated in the observed osteocalcin (OC) and osteopontin (OP) expression decrease. Moreover, EVs were isolated from conditioned media collected from cultures of hMSC at different stages of adipocyte differentiation and these specific adipogenic transcripts were detected inside. Finally, thanks to interspecies conditioned media exposition, we could highlight for the first time a horizontal transfer of adipogenic transcripts from medullary adipocytes to osteoblasts. Conclusions: Here, we have shown, for the first time, RNA transfer between hMSC-derived adipocytes and osteoblasts through EVs. Additional studies are needed to clarify if this mechanism has a role in the adipocytic switch driven on osteoblasts by adipocytes inside bone marrow and if EVs could be a target component to regulate the competition between osteoblasts and adipocytes in the prevention or in the therapy of osteoporosis and other osteopenia.

  • 出版日期2015-3-18