A Facile Approach to Chemically Modified Graphene and its Polymer Nanocomposites

作者:Zaman, Izzuddin; Kuan, Hsu-Chiang; Meng, Qingshi; Michelmore, Andrew; Kawashima, Nobuyuki; Pitt, Terry; Zhang, Liqun; Gouda, Sherif; Luong, Lee; Ma, Jun*
来源:Advanced Functional Materials, 2012, 22(13): 2735-2743.
DOI:10.1002/adfm.201103041

摘要

A scalable approach for the mass production of chemically modified graphene has yet to be developed, which holds the key to the large-scale production of stable graphene colloids for optical electronics, energy conversion, and storage materials, catalysis, sensors, composites, etc. Here, a facile approach to fabricating covalently modified graphene and its polymer nanocomposites is presented. The method involves: i) employing a common furnace, rather than a furnace installed with a quartz tube and operated in inert gas as required in previous studies, to treat a commercial graphite intercalation compound with thermal shocking and ultrasonication and fabricate graphene platelets (GnPs) with a thickness of 2.51 +/- 0.39 nm that contain only 7 at% oxygen; ii) grafting these GnPs with a commercial, long-chain surfactant, which is able to create molecular entanglement with polymer matrixes by taking advantage of the reactions between the epoxide groups of the platelets and the end amine groups of the surfactant, to produce chemically modified graphene platelets (m- GnPs); and iii) solution-mixing m-GnPs with a commonly used polymer to fabricate nanocomposites. These m-GnPs are well dispersed in a polymer with highly improved mechanical properties and a low percolation threshold of electrical conductivity at 0.25 vol%. This novel approach could lead to the future scalable production of graphene and its nanocomposites.