摘要

The monotopic membrane protein monoamine oxidase B (MAO B) is an important drug target for Parkinson's disease. In order to design more specific, and thereby more effective, inhibitors for this enzyme, it is necessary to determine what factors govern inhibitor specificity and the inhibitor binding process, including the roles of the lipid bilayer, the active site loop, and several key residues within the binding pocket. Atomistic molecular dynamics simulations of MAO B either embedded in a lipid bilayer or free in solution have been performed. The simulations suggest that the bilayer controls the availability of the active site cavity by regulating the degree of fluctuation in two key loops that form the greater part of the active site entrance (residues 85-110 and 155-165). In turn, the enzyme itself causes local thinning and a decrease in area per lipid of the surrounding bilayer environment. Additional MD simulations of MAO B in complex with seven different reversible inhibitors followed by nonequilibrium steered MD simulations of the inhibitor unbinding have also been performed. The simulations demonstrate that the average energy of interaction between inhibitor and MAO B residues during inhibitor egress is an effective indicator of inhibitor strength and is also useful for identifying key residues that govern inhibitor specificity. These data provide researchers with valuable tools for designing effective MAO B inhibitors as well as outline a method that can be translated to the study of other enzyme-inhibitor complexes.

  • 出版日期2011-7-26
  • 单位美国弗吉尼亚理工大学(Virginia Tech)