Glyoxalase-I is a novel target against Bcr-Abl(+) leukemic cells acquiring stem-like characteristics in a hypoxic environment

作者:Takeuchi M; Kimura S*; Kuroda J; Ashihara E; Kawatani M; Osada H; Umezawa K; Yasui E; Imoto M; Tsuruo T; Yokota A; Tanaka R; Nagao R; Nakahata T; Fujiyama Y; Maekawa T
来源:Cell Death and Differentiation, 2010, 17(7): 1211-1220.
DOI:10.1038/cdd.2010.6

摘要

Abl tyrosine kinase inhibitors (TKIs) such as imatinib and dasatinib are ineffective against Bcr-Abl(+) leukemic stem cells. Thus, the identification of novel agents that are effective in eradicating quiescent Bcr-Abl(+) stem cells is needed to cure leukemias caused by Bcr-Abl(+) cells. Human Bcr-Abl(+) cells engrafted in the bone marrow of immunodeficient mice survive under severe hypoxia. We generated two hypoxia-adapted (HA)-Bcr-Abl(+) sublines by selection in long-term hypoxic cultures (1.0% O-2). Interestingly, HA-Bcr-Abl(+) cells exhibited stem cell-like characteristics, including more cells in a dormant, increase of side population fraction, higher beta-catenin expression, resistance to Abl TKIs, and a higher transplantation efficiency. Compared with the respective parental cells, HA-Bcr-Abl(+) cells had higher levels of protein and higher enzyme activity of glyoxalase-I (Glo-I), an enzyme that detoxifies methylglyoxal, a cytotoxic by-product of glycolysis. In contrast to Abl TKIs, Glo-I inhibitors were much more effective in killing HA-Bcr-Abl(+) cells both in vitro and in vivo. These findings indicate that Glo-I is a novel molecular target for treatment of Bcr-Abl(+) leukemias, and, in particular, Abl TKI-resistant quiescent Bcr-Abl(+) leukemic cells that have acquired stem-like characteristics in the process of adapting to a hypoxic environment. Cell Death and Differentiation (2010) 17, 1211-1220; doi:10.1038/cdd.2010.6; published online 5 February 2010

  • 出版日期2010-7