摘要

Alexandrium catenella (Whedon et Kof.) Balech has exhibited seasonal recurrent blooms in the Thau lagoon (South of France) since first reported in 1995. Its appearance followed a strong decrease (90%) in phosphate (PO(4)3-) concentrations in this environment over the 1970-1995 period. To determine if this dinoflagellate species has a competitive advantage in PO(4)3--limited conditions in terms of nutrient acquisition, semicontinuous cultures were carried out to characterize phosphorus (P) uptake by A. catenella cells along a P-limitation gradient using different dilution rates (DRs). Use of both inorganic and organic P was investigated from measurements of 33PO(4)3- uptake and alkaline phosphatase activity (APA), respectively. P status was estimated from cellular P and carbon contents (Q(P) and Q(C)). Shifts in trends of Q(P)/Q(C) and Q(P) per cell (Q(P center dot cell-1)) along the DR gradient allowed the definition of successive P-stress thresholds for A. catenella cells. The maximal uptake rate of 33PO(4)3- increased strongly with the decrease in DR and the decrease in Q(P)/Q(C), displaying physiological acclimations to PO(4)3- limitation. Concerning maximal APA per cell, the observation of an all-or-nothing pattern along the dilution gradient suggests that synthesis of AP was induced and maximized at the cellular scale as soon as PO(4)3- limitation set in. APA variations revealed that the synthesis of AP was repressed over a PO(4)3- threshold between 0.4 and 1 mu M. As lower PO(4)3- concentrations are regularly observed during A. catenella blooms in Thau lagoon, a significant portion of P uptake by A. catenella cells in the field may come from organic compounds.

  • 出版日期2010-10