摘要

This paper investigates the global stability and the global asymptotic stability independent of the sizes of the delays of linear time-varying Caputo fractional dynamic systems of real fractional order possessing internal point delays. The investigation is performed via fixed point theory in a complete metric space by defining appropriate nonexpansive or contractive self-mappings from initial conditions to points of the state-trajectory solution. The existence of a unique fixed point leading to a globally asymptotically stable equilibrium point is investigated, in particular, under easily testable sufficiency-type stability conditions. The study is performed for both the uncontrolled case and the controlled case under a wide class of state feedback laws.

  • 出版日期2011