摘要

Recent advances in micromanufacturing technology have enabled the development of low-cost, low-power, multifunctional sensor nodes for wireless communication. Diverse sensing applications have also become a reality as a result. These include environmental monitoring, intrusion detection, battlefield surveillance, and so on. In a wireless sensor network (WSN), how to conserve the limited power resources of sensors to extend the network lifetime of the WSN as long as possible while performing the sensing and sensed data reporting tasks, is the most critical issue in the network design. In a WSN, sensor nodes deliver sensed data back to the sink via multihopping. The sensor nodes near the sink will generally consume more battery power than others; consequently, these nodes will quickly drain out their battery energy and shorten the network lifetime of the WSN. Sink relocation is an efficient network lifetime extension method, which avoids consuming too much battery energy for a specific group of sensor nodes. In this paper, we propose a moving strategy called energy-aware sink relocation (EASR) for mobile sinks in WSNs. The proposed mechanism uses information related to the residual battery energy of sensor nodes to adaptively adjust the transmission range of sensor nodes and the relocating scheme for the sink. Some theoretical and numerical analyze are given to show that the EASR method can extend the network lifetime of the WSN significantly.

  • 出版日期2014-6