摘要

Two high-performance Cu catalysts were successfully developed by immobilization of Cu ions in the nanospaces of poly(propylene imine) (PPI) dendrimer and magadiite for the selective C-C coupling of 2,6-dimethylphenol (DMP) to 3,3',5,5'-tetramethyldiphenoquinone (DPQ) with O-2 as a green oxidant. The PPI dendrimer encapsulated Cu ions in the internal nanovoids to form adjacent Cu species, which exhibited significantly high catalytic activity for the regioselective coupling reaction of DMP compared to previously reported enzyme and metal complex catalysts. The magadiite-immobilized Cu complex acted as a selective heterogeneous catalyst for the oxidative C-C coupling of DMP to DPQ. This heterogeneous catalyst was recoverable from the reaction mixture by simple filtration, reusable without loss of efficiency, and applicable to a continuous flow reactor system. Detailed characterization using ultraviolet-visible (UV-vis), Fourier transform infrared (FTIR), electronic spin resonance (ESR), and X-ray absorption fine structure (XAFS) spectroscopies and the reaction mechanism investigation revealed that the high catalytic performances of these Cu catalysts were ascribed to the adjacent Cu species generated within the nanospaces of the PPI dendrimer and magadiite.

  • 出版日期2015-2