摘要

NGF-induced differentiation of PC12 cells is mediated by actin-polymerisation-driven membrane protrusion, involving GTPase signalling pathways that activate actin nucleation promoting factors such as the neural Wiskott-Aldrich syndrome protein (N-WASP). Expression of the exocyst subunit Exo70 in PC12 cells and neurons leads to the generation of numerous membrane protrusions, an effect that is strongly potentiated upon NGF-induced differentiation. Forster resonance energy transfer ( FRET) imaging by fluorescence lifetime microscopy ( FLIM) reveals an NGF-induced interaction of activated TC10 with Exo70. Expression of dominant-negative mutants and siRNA-mediated knockdown implicates N-WASP in NGF-induced Exo70-TC10-mediated membrane protrusion. However, FRET imaging of N-WASP activation levels of cells expressing Exo70 and/or constitutively active TC10 reveals that this complex locally antagonises the NGF-induced activation of N-WASP in membrane protrusions. Experiments involving siRNA-mediated knockdown of Cdc42 and overexpression of constitutively active Cdc42 confirm that the Exo70-TC10 complex mainly targets the NGF-induced Cdc42-dependent activation of N-WASP. Our results show that Exo70 is responsible for the correct targeting of the Exo70-TC10 complex to sites of membrane protrusion. The functional uncoupling between both pathways represents a novel regulatory mechanism that enables switching between morphologically distinct-Cdc42- or TC10-dominated-forms of cellular membrane outgrowth.

  • 出版日期2007-8-1