摘要

Trace concentrations of Ti in quartz are used to indicate the pressure and temperature conditions of crystallization in the %26apos;TitaniQ%26apos; geothermobarometer of Thomas et al. (Contrib Miner Petrol 160:743-759, 2010). It utilises the partitioning of Ti into quartz as an indicator of the pressures and/or temperatures of crystal growth. For a given value of TiO2 activity in the system, if temperatures are inferred to +/- 20 A degrees C, pressure is constrained to +/- 1 kbar and vice versa. There are significant contrasts, however, between the conclusions from TitaniQ and those for natural quartz (as well as other mineral phases) in volcanic rocks. Application of the TitaniQ model to quartz from the 27 ka Oruanui and 760 ka Bishop high-silica rhyolites, where the values of T, P and TiO2 activity are constrained by other means (Fe-Ti oxide equilibria, melt inclusion entrapment pressures in gas-saturated melts, melt and amphibole compositions), yields inconsistent results. If realistic values are given to any two of these three parameters, then the value of the third is wholly unrealistic. The model yields growth temperatures at or below the granite solidus, pressures in the lower crust or upper mantle, or TiO2 activities inconsistent with the mineralogical and chemical compositions of the magmas. CL imagery and measurements of Ti (and other elements) in quartz are of great value in showing the growth histories and changes in conditions experienced by crystals, but direct linkages to P, T conditions during crystal growth cannot be achieved.

  • 出版日期2012-8