A possible solution of the puzzling variation of the orbital period of MXB 1659-298

作者:Iaria R.*; Gambino A. F.; Di Salvo T.; Burderi L.; Matranga M.; Riggio A.; Sanna A.; Scarano F.; D'Ai A.
来源:Monthly Notices of the Royal Astronomical Society, 2018, 473(3): 3490-3499.
DOI:10.1093/mnras/stx2529

摘要

MXB 1659-298 is a transient neutron-star low-mass X-ray binary system that shows eclipses with a periodicity of 7.1 h. MXB 1659-298 went to outburst in 2015 August, after 14 years of quiescence. We investigate the orbital properties of this source with a baseline of 40 years, obtained by combining the eight eclipse arrival times present in the literature with 51 eclipse arrival times collected during the last two outbursts. A quadratic ephemeris does not fit the delays associated with the eclipse arrival times and the addition of a sinusoidal term with a period of 2.31 +/- 0.02 yr is required. We infer a binary orbital period of P = 7.1161099(3) h and an orbital period derivative of. P = -8.5(1.2) x 10(-12) s s(-1). We show that the large orbital period derivative can be explained with a highly non-conservative mass-transfer scenario, in which more than 98 per cent of the mass provided by the companion star leaves the binary system. We predict an orbital period derivative value of. P = -6(3) x 10(-12) s s(-1) and constrain the companion-star mass between 0.3 and 1.2 M-circle dot. Assuming that the companion star is in thermal equilibrium, the periodic modulation can be due to either a gravitational quadrupole coupling arising from variations of the oblateness of the companion star or the presence of a third body of mass M-3 > 21 Jovian masses.

  • 出版日期2018-1