摘要

The role of autonomic nervous system (ANS) in adapting cerebral blood flow (CBF) to arterial blood pressure (ABP) fluctuations [cerebral autoregulation (CA)] is still controversial. We aimed to study the repercussion of autonomic failure (AF) on dynamic CA during the Valsalva maneuver (VM). Eight AF subjects with familial amyloidotic polineuropahty (FAP) were compared with eight healthy controls. ABP and CBF velocity (CBFV) were measured continuously with Finapres and transcranial Doppler, respectively. Cerebrovascular response was evaluated by cerebrovascular resistance index (CVRi), critical closing pressure (CrCP), and resistance-area product (RAP) changes. Dynamic CA was derived from continuous estimates of autoregulatory index (ARI) [ARI(t)]. During phase II of VM, FAP subjects showed a more pronounced decrease in normalized CBFV (78 +/- 19 and 111 +/- 16%; P = 0.002), ABP (78 +/- 19 and 124 +/- 12%; P = 0.0003), and RAP (67 +/- 17 and 89 +/- 17%; P = 0.019) compared with controls. CrCP and CVRi increased similarly in both groups during strain. ARI(t) showed a biphasic variation in controls with initial increase followed by a decrease during phase II but in FAP this response was blunted (5.4 +/- 3.0 and 2.0 +/- 2.9; P = 0.033). Our data suggest that dynamic cerebral autoregulatory response is a time-varying phenomena during VM and that it is disturbed by autonomic dysfunction. This study also emphasizes the fact that RAP + CrCP model allowed additional insights into understanding of cerebral hemodynamics, showing a higher vasodilatory response expressed by RAP in AF and an equal CrCP response in both groups during the increased intracranial and intrathoracic pressure, while classical CVRi paradoxically suggests a cerebral vasoconstriction.

  • 出版日期2014-8-1