摘要

The ultrafast relaxation kinetics of all-trans-beta-carotene homologs with varying numbers of conjugated double bonds n(n=7-15) and lycopene (n=11) has been investigated using femtosecond time-resolved absorption and Kerr-gate fluorescence spectroscopies, both carried out under identical excitation conditions. The nonradiative relaxation rates of the optically allowed S-2(1(1)B(u)(+)) state were precisely determined by the time-resolved fluorescence. The kinetics of the optically forbidden S-1(2(1)A(g)(-)) state were observed by the time-resolved absorption measurements. The dependence of the S-1 relaxation rates upon the conjugation length is adequately described by application of the energy gap law. In contrast to this, the nonradiative relaxation rates of S-2 have a minimum at n=9 and show a reverse energy gap law dependence for values of n above 11. This anomalous behavior of the S-2 relaxation rates can be explained by the presence of an intermediate state (here called the S-x state) located between the S-2 and S-1 states at large values of n (such as n=11). The presence of such an intermediate state would then result in the following sequential relaxation pathway S-2 -> S-x -> S-1 -> S-0. A model based on conical intersections between the potential energy curves of these excited singlet states can readily explain the measured relationships between the decay rates and the energy gaps.

  • 出版日期2009-6-7