Assessment of Applicability of Two-Fluid Model Code ACE-3D to Heat Transfer Test of Supercritical Water Flowing in an Annular Channel

作者:Nakatsuka Toru*; Ezato Koichiro; Misawa Takeharu; Seki Yohji; Yoshida Hiroyuki; Dairaku Masayuki; Suzuki Satoshi; Enoeda Mikio; Takase Kazuyuki
来源:Journal of Nuclear Science and Technology, 2010, 47(12): 1118-1123.
DOI:10.3327/jnst.47.1118

摘要

A supercritical-water-cooled reactor (SCWR) is a high-temperature, high-pressure water cooled reactor that operates above the critical pressure of water. In order to perform efficiently the thermal design of the SCWR, it is important to assess the thermal hydraulics in rod bundles of the core. Experimental conditions of mockup tests, however, may be limited because of technical and financial reasons. Therefore, it is required to establish an analytical design technique that can extrapolate experimental data to various design conditions of the reactor. Japan Atomic Energy Agency (JAEA) has improved the three-dimensional two-fluid model analysis code ACE-3D, which was originally developed for the two-phase flow thermal hydraulics of light water reactors, to handle the thermal hydraulic properties of water in the supercritical region. In the present study, heat transfer experiments of supercritical water flowing in a vertical annular channel around a heater pin, which were performed at JAEA, were analyzed with the improved ACE-3D to assess the prediction performance of the code. As a result, it was implied that the ACE-3D code is applicable to the prediction of wall temperatures of a single rod that simulates the fuel bundle geometry of the SCWR core.

  • 出版日期2010-12

全文