摘要

Aims: Platinum-based chemotherapy is considered as the first-line treatment for nonsmall cell lung cancer (NSCLC) patients. However, platinum resistance and toxicity are major obstacles to its clinical applications. The two P-type ATPases ATP7A and ATP7B have been identified to play an essential role in the transport of platinum. Their genetic polymorphisms may affect the treatment outcome and toxicity of platinum. In this study, we aimed to investigate the association of ATP7A and ATP7B genetic polymorphisms with clinical outcome and toxicity of platinum-based chemotherapy in NSCLC patients. @@@ Subjects and Methods: Four hundred and twenty-seven NSCLC patients were enrolled. All patients have accepted platinum-based chemotherapy for at least two cycles. ATP7A (rs2227291 and rs6622665) and ATP7B (rs1061472 and rs9535826) polymorphisms were genotyped by allele-specific matrix-assisted laser desorption ionization-time-of-flight mass spectrometry. Chemotherapeutic response, overall survival time, and hematological and gastrointestinal toxicity were recorded and their associations with genetic factors were evaluated. @@@ Results: ATP7A rs2227291 and rs6622665 deviated from Hardy-Weinberg equilibrium. Therefore, the two single-nucleotide polymorphisms were not taken into consideration. For ATP7B polymorphism, ATP7B rs9535826 was associated with gastrointestinal toxicity, and the GG genotype showed lower gastrointestinal toxicity (odds ratio = 0.30; 95% confidence interval = 0.10-0.90; P = 0.031). @@@ Conclusion: The genotypes of ATP7B gene may be novel and significant biomarkers for predicting the gastrointestinal toxicity of platinum-based chemotherapy in NSCLC patients.