摘要

In this article, we report a new route to synthesize diamond by converting "solid" carbon nanofibers with a Spark Plasma Sintering system under low temperature and pressure (even at atmospheric pressure). Well-crystallized diamond crystals are obtained at the tips of the carbon nanofibers after sintering at 1500 degrees C and atmospheric pressure. Combining with scanning electron microscopy, transmission electron microscopy, electron-energy loss spectroscopy and Raman spectroscopy observations, we propose the conversion mechanism as follows: the disorder "solid" carbon nanofibers -> well crystallined carbon nanofibers -> bent graphitic sheets -> onion-liked rings -> diamond single crystal -> the bigger congregated diamond crystal. It is believed that the plasma generated by low-voltage, vacuum spark, via a pulsed DC in Spark Plasma Sintering process, plays a critical role in the low temperature and low pressure diamond formation. This Spark Plasma Sintering process may provide a new route for diamond synthesis in an economical way to a large scale.