Parallelized Monte Carlo software to efficiently simulate the light propagation in arbitrarily shaped objects and aligned scattering media

作者:Zoller Christian Johannes*; Hohmann Ansgar; Foschum Florian; Geiger Simeon; Geiger Martin; Ertl Thomas Peter; Kienle Alwin
来源:Journal of Biomedical Optics, 2018, 23(6): 065004.
DOI:10.1117/1.JBO.23.6.065004

摘要

A GPU-based Monte Carlo software (MCtet) was developed to calculate the light propagation in arbitrarily shaped objects, like a human tooth, represented by a tetrahedral mesh. A unique feature of MCtet is a concept to realize different kinds of light-sources illuminating the complex-shaped surface of an object, for which no preprocessing step is needed. With this concept, it is also possible to consider photons leaving a turbid media and reentering again in case of a concave object. The correct implementation was shown by comparison with five other Monte Carlo software packages. A hundredfold acceleration compared with central processing units-based programs was found. MCtet can simulate anisotropic light propagation, e.g., by accounting for scattering at cylindrical structures. The important influence of the anisotropic light propagation, caused, e.g., by the tubules in human dentin, is shown for the transmission spectrum through a tooth. It was found that the sensitivity to a change in the oxygen saturation inside the pulp for transmission spectra is much larger if the tubules are considered. Another "light guiding" effect based on a combination of a low scattering and a high refractive index in enamel is described.

  • 出版日期2018-6