摘要

Quantum secret sharing (QSS) refers to the process in which the secret is divided into several sub-secrets and sent to different users utilizing quantum technology. Only the user belonging to a specific subset (authorized set) can reconstruct the initial secret correctly. In principle, the authorized set can regain the initial secret exactly via sub-secrets. However, when realizing QSS in practice, because of the interference of various noises, the secret obtained by the authorized set may not be consistent with the initial one. For a particular kind of QSS protocols, in which the bitwise XOR of sub-secrets is equal to the initial secret theoretically, we propose a feasible multiparty error-correcting method based on binary search technique and two-party Cascade error-correcting method. With this method, we can solve the problem that the authorized set cannot regain the initial secret correctly. Finally, we analyze the optimal block length, the amount of leaked information, and realize tripartite error-correcting method by experimental simulation.