摘要

Purpose: Salvicine is a novel DNA topoisomerase II inhibitor with potent anticancer activity. In present study, the effect of salvicine against metastasis is evaluated using human breast carcinoma orthotopic metastasis model and its mechanism is further investigated both in animal and cellular levels. Experimental Design: The MDA-MB-435 orthotopic xenograft model was applied to detect the antimetastatic effect of salvicine. Potential target candidates were detected and analyzed by microarray technology. Candidates were verified and explored by reverse transcription-PCR and Western blot. Salvicine activities on stress fiber formation, invasion, and membrane translocation were further investigated by immunofluorescence, invasion, and ultracentrifugal assays. Results: Salvicine significantly reduced the lung metastatic foci of MDA-MB-435 orthotopic xenograft, without affecting primary tumor growth obviously. A comparison of gene expression profiles of primary tumors and lung metastatic focus between salvicine-treated and untreated groups using the CLOTECH Atlas human Cancer 1.2 cDNA microarray revealed that genes involved in tumor metastasis, particularly those closely related to cell adhesion and motility, were obviously down-regulated, including fibronectin, integrin a3, integrin beta 3, integrin beta 5, FAK, paxillin, and RhoC. Furthermore, salvicine significantly down-regulated RhoC at both mRNA and protein levels, greatly inhibited stress fiber formation and invasiveness of MDA-MB-435 cells, and markedly blocked translocation of both RhoA and RhoC from cytosol to membrane. Conclusion: The unique antimetastatic action of salvicine, particularly its specific modulation of cell motility in vivo and in vitro, is closely related to Rho-dependent signaling pathway.