摘要

Wind energy conversion systems can work by fixed and variable speed using the power electronic converters. The variable-speed type is more desirable because of its ability to achieve maximum efficiency at all wind speeds. The main operational region for wind turbines according to wind speed is divided into partial load and full load. In the partial-load region, the main goal is to maximize the power captured from the wind. This goal can be achieved by controlling the generator torque such that the optimal tip speed ratio is tracked. Since the wind turbine systems are nonlinear in nature and due to modeling uncertainties, this goal is difficult to be achieved in practice. The proportional-integral (PI) controller, due to its robustness and simplicity, is very often used in practical applications, but finding its optimal gains is a challenging task. In this paper, to cope with nonlinearities and at the same time modeling uncertainties of wind turbines, a PI torque controller is proposed such that its optimal gains are derived via a novel scheme based on particle swarm optimization algorithm and fuzzy logic theory. The proposed method is applied to a 5-MW wind turbine model. The simulation results show the effectiveness of the proposed method in capturing maximum power in the partial-load region while coping well with nonlinearities and uncertainties.

  • 出版日期2013-10

全文