摘要

This work reports a new type of disposable electrochemical sensor for the determination of bisphenol A (BPA). The working electrodes were fabricated by sputtering gold nanoparticles on commercial art paper and then modifying the gold layer with multi-walled carbon nanotubes (MWCNTs). The electrode in their intermediated and final stage was characterized by atomic force microscope, scanning electron microscope and electrochemical techniques. To perform electrochemical analysis, the resulting electrode was integrated with a homemade paper-based analytical device, which could also ensure the immobilization of MWCNTs on the electrode surface without any functionalization. The determination of BPA was investigated by linear sweep voltammetry (LSV). A wide linearity in the range from 0.2 to 20 mg/L with a detection limit of 0.03 mg/L (S/N = 3) was obtained. The between-sensor reproducibility was 5.7% (n = 8) for 0.5 mg/L BPA. The proposed sensor showed good resistance against interferences and was applied to detect BPA leached from real plastic samples with satisfying results. This disposable sensor is readily mass-produced and has been verified to serve as an attractive alternative to screen printed electrodes for practical applications.