摘要

Multi-walled carbon nanotubes (MWCNTs) were grafted onto carbon fibers (CFs) using an injection chemical vapor deposition method. The orientation and length (16.6-108.6 mu m) of the MWCNTs were controlled by the surface treatment of the CFs and the growth time, respectively. The interface between the MWCNTs and the CFs indicated the grafted CNTs were immobilized by embedding catalyst on CFs. Two orders of magnitude increase in the specific surface areas of CFs was obtained by grafting the MWCNT. MWCNT-CF hybrids exhibited good wettability with the epoxy resin due to the surface roughness and capillary action. Single-fiber composite fragmentation tests revealed an remarkable improvement of interfacial shear strength (IFSS) controlled by the orientation and length of MWCNTs. MWCNTs with an perpendicular alignment and long length showed a high IFSS in epoxy composites due to better wettability and a large contact interface between the hybrids and the resin. Hybrids with an optimum length (47.2 mu m) of aligned MWCNTs showed a dramatic improvement of IFSS up to 175% compared to that of pristine CFs.