摘要

Femtosecond photoelectron imaging spectroscopy is a powerful technique for following state-resolved molecular transformations in complex coupled potential energy landscapes. To avoid unwanted nonlinear side-effects, the employed laser pulse energies are usually reduced to minimal values. However, the energy calibration of the photoelectron imaging detector is ideally performed using multi-photon above-threshold ionization of suitable atomic species, for which rather high laser intensities are required. In this work, we show that the calibration spectra of xenon obtained with high laser pulse energies cannot be directly used for the evaluation of molecular photoelectron spectra recorded using low-energy laser pulses. The reason is the intensity-dependent AC Stark shift of the atomic ionization energies to larger values, which in turn leads to a corresponding decrease of the photoelectron kinetic energies. We present a simple procedure to quantify this so-called ponderomotive shift and calculate the theoretically expected un-shifted photoelectron energies. Published by AIP Publishing.

  • 出版日期2017-4