Antiviral Activity of Chrysin Derivatives against Coxsackievirus B3 in vitro and in vivo

作者:Song Jae Hyoung; Kwon Bo Eun; Jang Hongjun; Kang Hyunju; Cho Sungchan; Park Kwisung; Ko Hyun Jeong*; Kim Hyoungsu
来源:Biomolecules & Therapeutics, 2015, 23(5): 465-470.
DOI:10.4062/biomolther.2015.095

摘要

Chrysin is a 5,7-dihydroxyflavone and was recently shown to potently inhibit enterovirus 71 (EV71) by suppressing viral 3C protease (3C(pro) activity. In the current study, we investigated whether chrysin also shows antiviral activity against coxsackievirus B3 (CVB3), which belongs to the same genus (Enterovirus) as EV71, and assessed its ability to prevent the resulting acute pancreatitis and myocarditis. We found that chrysin showed antiviral activity against CVB3 at 10 mu M, but exhibited mild cellular cytotoxicity at 5011M, prompting us to synthesize derivatives of chrysin to increase the antiviral activity and reduce its cytotoxicity. Among four 4-substituted benzyl derivatives derived from 0(5) benzyl-protected derivatives 7, 9-11 had significant antiviral activity and showed the most potent activity against CVB3 with low cytotoxicity in Vero cells. Intraperitoneal injection of CVB3 in BALB/c mice with 1x10(6) TCID50 (50% tissue culture infective dose) of CVB3 induced acute pancreatitis with ablation of acinar cells and increased serum CXCL1 levels, whereas the daily administration of 9 for 5 days significantly alleviated the pancreatic inflammation and reduced the elevation in serum CXCL1 levels. Collectively, we assessed the anti-CVB3 activities of chrysin and its derivatives, and found that among 4-substituted benzyl derivatives, 9 exhibited the highest activity against CVB3 in vivo, and protected mice from CVB3-induced pancreatic damage, simultaneously lowering serum CXCL1 levels.

  • 出版日期2015-9-1