摘要

Palmyra Atoll has four partially isolated lagoons up to 50 m in depth, each with complex and variable bottom topographies. Measurements of depth, temperature, salinity, turbidity and dissolved oxygen (DO) revealed a well-mixed shallow surface layer (0-10 m depth) and below that pronounced stratification of DO in the absence of a pycnocline. Turbidity increased in a step-like manner at similar to 5 m depth, at the oxycline. For all deep sections of the lagoon (> 30 m), DO declined uniformly to 0% saturation. As determined from filtration, mass of particulates was independent of depth. Surface mixing and deep-water stratification are both stable at different temporal scales, including day versus night, daily, weekly and annually. We suggest that lagoon circulation is represented by a shallow, westward-moving surface layer of well-to-partially mixed water with high DO and low turbidity, underlain by a relatively static and temporally stable layer with low to zero DO and elevated turbidity. This is the first report of such conditions within a deep lagoon system, and only the second report of anoxic conditions in any such system. In deep-water, stable euxinic conditions reflect bottom topography, with dysoxic and anoxic water being constrained within silled basins. The occurrence and depth of large volumes of sediment-laden and dysoxic/anoxic water need to be considered in management proposals designed to increase water flow through the lagoon. These novel water column conditions most probably arose as a consequence of military construction work, consistent with published reports of profound changes to the atoll during 1940-1945. If so, they highlight the need to better understand the possible consequences of cutting channels and modification of lagoon flow at many atolls across the central Pacific Ocean.

  • 出版日期2011-3