摘要

Hydrodeoxygenation (HDO) is considered as a promising technology for upgrading of bio-oil, obtained from fast pyrolysis of biomass, for renewable liquid fuel production. However, the development of suitable catalysts for this process is challenging up to now due to high coke formation and deactivation. In this paper, we describe a new bimetallic catalyst using non-sulfided, non-noble metals for HDO of phenol as model compound for bio-oil. The results show that the combination of nickel and cobalt supported on zeolite Beta (H-Beta) to form a bimetallic catalyst not only increased activity but also changed the product distribution toward saturated hydrocarbons as compared to monometallic Ni/Beta and Co/Beta catalysts. Moreover, Ni-Co bimetallic catalyst effectively avoided coke formation. The formation of Ni-Co alloy in Ni-Co/Beta catalysts led to reduced particle sizes and hence increased the dispersion of active sites on Ni- Co/Beta and finally improved catalytic performance. Notably, 96% selectivity to hydrocarbon at 97% phenol conversion were achieved on 10%Ni10%Co/Beta catalyst at 250 degrees C within 5 h reaction time.

  • 出版日期2014-4