Novel polyphenylsulfone membrane for potential use in solvent nanofiltration

作者:Darvishmanesh Siavash*; Jansen Johannes C; Tasselli Franco; Tocci Elena; Luis Patricia; Degreve Jan; Drioli Enrico; Van der Bruggen Bart
来源:Journal of Membrane Science, 2011, 379(1-2): 60-68.
DOI:10.1016/j.memsci.2011.05.045

摘要

In this work, the preparation of nanofiltration flat sheet membranes based on polyphenylsulfone (PPSU) was investigated. A synthesis method based on phase inversion with three different compositions of PPSU (17 wt.%, 21 wt.% and 25 wt.%) in dimethylacetamide (DMA), N-methyl-2-pyrrolidone (NMP) and a mixture of dimethylformamide (DMF) and NMP was employed. Scanning electron microscopy (SEM) was used to investigate the morphological characteristics and the structure of the membranes, which were found to have a typical asymmetric structure with a dense skin top layer and a porous substructure. The pore size was estimated by measuring the permeation rate of N(2) when different pressures are applied, ranging from 15 nm to 40 nm, depending on the manufacturing method. An increasing amount of macro-voids was observed in the membrane substructure when the polymer concentration is decreased. The performance of the prepared membranes has been tested by the measure of methanol permeability and the rejection of a dissolved dye (Rose Bengal). The methanol permeability decreases with increasing polymer concentration while the rejection of Rose Bengal (RB) increases. In addition, the impact of ethyl acetate, n-hexane, toluene, diethyl ether, iso-propanol and acetone on the membranes was investigated by measuring the flux of methanol and rejection of RB before and after solvent exposure. The membranes were visually stable in most of the solvents except acetone and toluene. The performance of the membranes changed dramatically for ethyl acetate and diethyl ether while iso-propanol had a minor effect and complete stability was observed with n-hexane.

  • 出版日期2011-9-1