摘要

Previous studies of the two-sided assembly line balancing problem assumed equal relationships between each two tasks assignable to a side of the line. In practice, however, this relationship may be related to such factors as the distance between the implementation place and the tools required for implementation. We know that the more relationships exist between the tasks assigned to each station, the more efficient will be the assembly line. In this paper, we suggest an index for calculating the value of the relationship between each two tasks, and define a performance criterion called 'assembly line tasks consistency' for calculating the average relationship between the tasks assigned to the stations of each solution. We propose a simulated annealing algorithm for solving the two-sided assembly line balancing problem considering the three performance criteria of number of stations, number of mated-stations, and assembly line tasks consistency. Also, the simulated annealing algorithm is modified for solving the two-sided assembly line balancing problem without considering the relationships between tasks. This modification finds five new best solutions for the number of stations performance criterion and ten new best solutions for the number of mated-stations performance criterion for benchmark instances.

  • 出版日期2013-12

全文