A bead-based immunofluorescence-assay on a microfluidic dielectrophoresis platform for rapid dengue virus detection

作者:Iswardy Edwar; Tsai Tien Chun; Cheng I Fang; Ho Tzu Chuan; Perng Guey Chuen*; Chang Hsien Chang*
来源:Biosensors and Bioelectronics, 2017, 95: 174-180.
DOI:10.1016/j.bios.2017.04.011

摘要

The proof of concept of utilizing a microfluidic dielectrophoresis (DEP) chip was conducted to rapidly detect a dengue virus (DENV) in vitro based on the fluorescence immunosensing. The mechanism of detection was that the DEP force was employed to capture the modified beads (mouse anti-flavivirus monoclonal antibody -coated beads) in the microfluidic chip and the DENV modified with fluorescence label, as the detection target, can be then captured on the modified beads by immunoreaction. The fluorescent signal was then obtained through fluorescence microscopy, and then quantified by ImageJ freeware. The platform can accelerate an immunoreaction time, in which the on-chip detection time was 5 min, and demonstrating an ability for DENV detection as low as 104 PFU/mL. Furthermore, the required volume of DENV samples dramatically reduced, from the commonly used similar to 50 mu L, to similar to 15 mu L, and the chip was reusable ( > 50x). Overall, this platform provides a rapid detection (5 min) of the DENV with a low sample volume, compared to conventional methods. This proof of concept with regard to a microfluidic dielectrophoresis chip thus shows the potential of immunofluorescence based -assay applications to meet diagnostic needs.

  • 出版日期2017-9-15