摘要

The common distributed video coding (DVC) systems treat input video frames group by group. In each group of pictures (GOP), usually the first frame, called key frame, is intra-coded and the others are Wyner-Ziv (WZ)-coded. This GOP coding structure presents a fixed and inefficient coding mode switch (key or WZ) at group boundaries, thus preventing a DVC system from adapting the rate-distortion (R-D) performance to varying video content. In this work, a structure of temporal group of blocks (TGOB) with dynamic coding mode (key/WZ) decision is presented. This dynamic TGOB coding architecture determines each image block to be a key block or a WZ block based on spatiotemporal image analysis, resulting in a mode switch of fine granularity in both the spatial and temporal domains. As a consequence, not only the overall coding efficiency is improved, but also the temporal flickering artifacts for the reconstructed video are reduced substantially. Experimental results show that our proposed DVC scheme with block mode decision achieves up to 2.85 dB of quality gain and also up to 51% of temporal flickering reduction, compared to the well-known DISCOVER system.

  • 出版日期2013-12-1