摘要

Many patients with symptomatic bone metastases receive radiation therapy, even though radiation is known to have potential adverse effects on bone. We hypothesized that the concurrent use of a bisphosphonate drug (zoledronic acid, ZA) or a combination of ZA plus an anabolic agent (parathyroid hormone, PTH) would lead to improvements in the microarchitecture and mechanical properties of irradiated bone. Human breast cancer cells were injected into the distal femur of 56 female nude mice, which were then divided into four groups: no treatment (0 Gy), radiation administered 4 weeks postinjection (20 Gy), radiation plus ZA (12.5 mu g/kg weekly from weeks 4 to 12) (20 Gy + ZA), and radiation followed by ZA (25 mu g/kg weekly from weeks 4 to 8) and PTH(1-34) (100 mu g mu g/kg daily from weeks 8 to 12) (20 Gy + ZA + PTH). Left limbs served as normal control bones. Bone loss over the 12-week study was tracked with serial radiography and bone densitometry. At the end of the study, micro-computed tomography and mechanical testing were used to quantify bone microarchitecture and bone strength. Radiation alone failed to prevent tumor-induced decreases in bone mineral density (BMD), trabecular bone volume, and bone strength. Treatment with 20 Gy + ZA or 20 Gy + ZA + PTH as adjuncts to radiation was effective at preserving trabecular bone architecture and bone strength at normal levels. ZA reduced the risk of mechanical fragility following irradiation of a lytic bone lesion. Supplemental use of PTH did not result in further increases in bone strength but was associated with significant increases in BMD and bone mass, suggesting that it may be beneficial in enhancing bone architecture following radiation therapy.

  • 出版日期2010-9