Abrogation of DNA vector-based RNAi during apoptosis in mammalian cells due to caspase-mediated cleavage and inactivation of Dicer-1

作者:Ghodgaonkar M M; Shah R G; Kandan Kulangara F; Affar E B; Qi H H; Wiemer E; Shah G M*
来源:Cell Death and Differentiation, 2009, 16(6): 858-868.
DOI:10.1038/cdd.2009.15

摘要

RNA interference (RNAi) is used as a reverse-genetic tool to examine functions of a gene in different cellular processes including apoptosis. As key cellular proteins are inactivated during apoptosis, and as RNAi requires cooperation of many cellular proteins, we examined whether DNA vector-based RNAi would continue to function during apoptosis. The short hairpin RNA transcribed from the DNA vector is processed by Dicer-1 to form small interfering RNA that is incorporated in the RNA-induced silencing complex (RISC) to guide a sequence-specific silencing of the target mRNA. We report here that DNA vector-based RNAi of three different genes, namely poly(ADP-ribose) polymerase-1, p14(ARF) and lamin A/C are abrogated during apoptosis. The failure of DNA vector-based RNAi was not at the level of Ago-2 or RISC-mediated step of RNAi but due to catalytic inactivation of Dicer-1 on specific cleavage at the STTD1476 and CGVD(1538) sites within its RNase IIIa domain. Using multiple approaches, caspase-3 was identified as the major caspase responsible for the cleavage and inactivation of Dicer-1. As Dicer-1 is also the common endonuclease required for formation of microRNA (miRNA) in mammalian cells, we observed decreased levels of mature forms of miR-16, miR-21 and let-7a. Our results suggest a role for apoptotic cleavage and inactivation of Dicer-1 in controlling apoptotic events through altered availability of miRNA. Cell Death and Differentiation (2009) 16, 858-868; doi: 10.1038/cdd.2009.15; published online 20 February 2009

  • 出版日期2009-6