摘要

A micro-scale free vibration analysis of composite laminated Timoshenko beam (CLTB) model is developed based on the new modified couple stress theory. In this theory, a new anisotropic constitutive relation is defined for modeling the CLTB. This theory uses rotation-displacement as dependent variable and contains only one material length scale parameter. Hamilton's principle is employed to derive the governing equations of motion and boundary conditions. This new model can be reduced to composite laminated Bernoulli-Euler beam model of the couple stress theory. An example analysis of free vibration of the cross-ply simply supported CLTB model is adopted, and an explicit expression of analysis solution is given. Additionally, the numerical results show that the present beam models can capture the scale effects of the natural frequencies of the micro-structure.