摘要

This paper presents the exact stress solution of the non-associative Drucker-Prager elastoplastic model governed by linear isotropic hardening rule. The stress integration is performed under constant strain-rate assumption and the derived formulas are valid in the setting of small strain elastoplasticity theory. Based on the time-continuous stress solution, a complete discretized stress updating algorithm is also presented providing the solutions for the special cases when the initial stress state is located in the apex and when the increment produces a stress path through the apex. Explicit expression for the algorithmically consistent tangent tensor is also derived. In addition, a fully analytical strain solution is also derived for the stress-driven case using constant stress-rate assumption. In order to get a deeper understanding of the features of these solutions, two numerical test examples are also presented.

  • 出版日期2012-1