摘要

Differential thermal analysis (DTA) and differential scanning calorimetry (DSC) of the minute samples in the range of microgram to nanogram were studied using original cantilever-type calorimeters. The micro-fabricated calorimeter with a heater and thermal sensors was able to perform a fast temperature scan at above 1000 K/s and a high-resolution heat measurement. The DTA of minuscule metal samples demonstrated some advances such as the thermal analysis of a 20 ng level indium and observation of a strange phase transition of a binary alloy. The power compensation type DSC using a thermal feedback system was also performed. Thermal information of a microgram level sample was observed as splitting into the DSC and DTA signals because of a mismatch between the sample and the calorimeter. Although there remains some room for improvement in terms of the heat flow detection, the behavior of the compensation system in the DSC was theoretically understood through a lumped model. Those experiments also produced some findings, such as a fin effect with sample loading, a measurable weight range, a calibration of the calorimeter and a product design concept. The development of the nano-DTA and nano-DSC will enable breakthroughs for the fast calorimetry of the microscopic size samples.

  • 出版日期2016-8-10