Atomic Layer Etching at the Tipping Point: An Overview

作者:Oehrlein G S*; Metzler D; Li C
来源:ECS Journal of Solid State Science and Technology, 2015, 4(6): N5041-N5053.
DOI:10.1149/2.0061506jss

摘要

The ability to achieve near-atomic precision in etching different materials when transferring lithographically defined templates is a requirement of increasing importance for nanoscale structure fabrication in the semiconductor and related industries. The use of ultra-thin gate dielectrics, ultra thin channels, and sub-20 nm film thicknesses in field effect transistors and other devices requires near-atomic scale etching control and selectivity. There is an emerging consensus that as critical dimensions approach the sub-10 nm scale, the need for an etching method corresponding to Atomic Layer Deposition (ALD), i.e. Atomic Layer Etching (ALE), has become essential, and that the more than 30-year quest to complement/replace continuous directional plasma etching (PE) methods for critical applications by a sequence of individual, self-limited surface reaction steps has reached a crucial stage. A key advantage of this approach relative to continuous PE is that it enables optimization of the individual steps with regard to reactant adsorption, self-limited etching, selectivity relative to other materials, and damage of critical surface layers. In this overview we present basic approaches to ALE of materials, discuss similarities/crucial differences relative to thermal and plasma-enhanced ALD, and then review selected results on ALE of materials aimed at pattern transfer. The overview concludes with a discussion of opportunities and challenges ahead. (C) The Author(s) 2015. Published by ECS. This is an open access article distributed under the terms of the Creative Commons Attribution Non-Commercial No Derivatives 4.0 License (CC BY-NC-ND, http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial reuse, distribution, and reproduction in any medium, provided the original work is not changed in any way and is properly cited. For permission for commercial reuse, please email:oa@electrochem.org.

  • 出版日期2015