High-Pressure Electrides: The Chemical Nature of Interstitial Quasiatoms

作者:Miao Mao sheng*; Hoffmann Roald
来源:Journal of the American Chemical Society, 2015, 137(10): 3631-3637.
DOI:10.1021/jacs.5b00242

摘要

Building on our previous chemical and physical model of high-pressure electrides (HPEs), we explore the effects of interaction of electrons confined in crystals but off the atoms, under conditions of extreme pressure. Electrons in the quantized energy levels of voids or vacancies, interstitial quasiatoms (ISQs), effectively interact with each or with other atoms, in ways that are quite chemical. With the well-characterized Na HPE as an example, we explore the ionic limit, ISQs behaving as anions. A detailed comparison with known ionic compounds points to high ISQ charge density. ISQs may also form what appear to be covalent bonds with neighboring ISQs or real atoms, similarly confined. Our study looks specifically at quasimolecular model systems (two ISQs, a Li atom and a one-electron ISQ, a Mg atom and two ISQs), in a compression chamber made of He atoms. The electronic density due to the formation of bonding and antibonding molecular orbitals of the compressed entities is recognizable, and a bonding stabilization, which increases with pressure, is estimated. Finally, we use the computed Mg electride to understand metallic bonding in one class of electrides. In general, the space confined between atoms in a high pressure environment offers up quantized states to electrons. These ISQs, even as they lack centering nuclei, in their interactions with each other and neighboring atoms may show anionic, covalent, or metallic bonding, all the chemical features of an atom.

  • 出版日期2015-3-18
  • 单位北京计算科学研究中心