Unidirectional Wetting in the Hydrophobic Wenzel Regime

作者:Lai Chang Quan; Choi W K*
来源:Advanced Materials Interfaces, 2015, 2(4): 1400444.
DOI:10.1002/admi.201400444

摘要

Unidirectional wetting surfaces can cause liquid droplets to flow/move in one direction while pinning them in the other directions, a feature that is useful for biosensing, adhesives, thermal management, and microfluidics. Such surfaces can be fabricated by employing structurally or chemically asymmetric nanostructures. While unidirectional wetting in the hydrophobic Wenzel regime had previously been observed on surfaces decorated with chemically asymmetric nanostructures, it has yet to be demonstrated on structurally asymmetric nanostructures. Based on the current understanding of the phenomenon, this can only be achieved using highly bent nanowires. Here, evidence to the contrary is provided by showing that mildly bent nanowires can also bring about unidirectional wetting in the hydrophobic Wenzel regime, even for contact angles beyond the superhydrophobic limit. Using NaCl precipitation, the unidirectional wetting mechanism is analyzed on a nanoscale level and it is found that the criteria for unidirectional wetting to take place in the hydrophobic Wenzel regime are different from that in the hydrophilic Wenzel regime. Moreover, it is revealed that slight wetting in the pinned direction can be caused by large scale deformation of high aspect ratio nanostructures during droplet spreading, which may be part of the reason behind previous observations of near-unidirectional wetting on bent nanowires with high aspect ratios.

  • 出版日期2015-3-6

全文