摘要

In this work, we proposed a novel strategy to manipulate the behavior of the metallic nanoparticle under the resonant condition by using engineered azimuthally polarized optical field. Through optimizing the spatial phase distribution of the illumination, the optical force can be tailored to support stable optical trapping while avoiding trap destabilization caused by optical overheating effect simultaneously. Besides, the resonant particle can be stably trapped at predefined location in 3 dimensional space, or revolves around the beam axis with characteristics that can be holistically controlled in terms of both trajectory and rotation direction. The technique demonstrated in this work may open up new avenues for optical manipulation.