摘要

A simple jellium model is used to investigate the stability of a metal nanowire as a function of its size. The theoretical results from the model indicate the quantum selectivity of preferable radii of nanowires, in apparent agreement with the experimental observations. It is consequently suggested that a series of stable "magic numbers" and "instability gaps" observed in the synthesis experiments of Au nanowires is mainly attributed to the quantum-mechanical behavior. These stable radii can be achieved by rearranging atoms during the formation of nanowires. The model is also used to analyze the growth of Au nanomesas on a graphite surface, and the puzzling growth behavior of Au nanomesas can be reasonably explained.

  • 出版日期2008-12