摘要

In the central Vienna Basin, the area north of the River Danube is dominated by large river terraces consisting mainly of coarse sandy gravels and sand deposited by the Danube and the Morava River. IRSL dating for the terrace body yielded minimum ages from about 200 to 300 ka. The terrace deposits are locally covered with loess and aeolian sand of the last glacial period revealing OSL/IRSL ages of about 15 ka. The terraces are dissected by a system of normal faults. One of these faults, the Aderklaa-Bockfliess Fault, was investigated in 2014 by paleoseismological trenching. Eventually, the exact fault location and its vertical offset of 10 m were defined by combining electrical resistivity measurements and the analysis of remote sensing data. In addition, at the northern part of this so-called Gaenserndorf terrace, high-resolution digital terrain models based on LIDAR measurements show landforms comparable with relief features resulting from permafrost degradation. Large elongated and clam-shaped depressions are interpreted as basins of former thermokarst lakes. Current dry valleys are interpreted as the Pleistocene drainages of the terrace surface. The cryogenic morphology is preserved only in the elevated parts of the terrace and therefore in the footwall of the bounding normal faults. In contrast, Quaternary basins of the hanging wall are filled with up to 40 m thick Pleistocene and Holocene growth strata. Therefore, most characteristics of the recent geomorphology can be interpreted as a result of overlapping neotectonic processes and permafrost degeneration during the Pleistocene.

  • 出版日期2017-9-7