摘要

An original two-step "three phase'' elastic-viscoplastic scale transition model is developed based on the combined self-consistent and Mori-Tanaka schemes. A coated inclusion is embedded within a matrix, wherein the inclusion represents grain interiors and the coating of the inclusion mimics the effects of grain boundaries and triple junctions. The predominant behavior within the grain interiors is captured through dislocation glide, whereas grain boundary (GB) dislocation emission and absorption, as well as thermally assisted GB sliding, describe the deformation processes within the coating describing the GB affected zone. Furthermore, an imperfect interface is assumed between the inclusion and the coating to account for viscoplastic grain boundary sliding along a stick-slip mechanism. Results and discussion focus on the competitive roles of GB sliding, GB dislocation emission/absorption, dislocation sweep in grain cores and collective dislocation plasticity, and the origins of the pronounced strain rate sensitivity of fcc NC materials.

  • 出版日期2011