摘要

Carbon nanoparticles are promising candidates for enzyme immobilization. We investigated enzyme loading and laccase activity on various carbon nanoparticles, fullerene (C-60), multi-walled carbon nanotubes (MWNTs), oxidized-MWNTs (O-MWNTs), and graphene oxide (GO). The loading capacity was highest for O-MWNTs and lowest for C-60. The activity of laccase on various nanomatrices using 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTs) as a substrate decreased in the following order: GO > MWNTs > O-MWNTs > C. We speculated that aggregation of the nanoparticles influenced enzyme loading and activity by reducing the available adsorption space and substrate accessibility. The nanoparticle-immobilized laccase was then used for removal of bisphenol and catechol substrates. Compared to free laccase, the immobilized enzymes had significantly reduced reaction rates. For example, the reaction rate of GO-laccase conjugated with bisphenol or catechol substrates was only 10.28% or 12.33%, respectively, of that of the free enzyme. Considering that there was no obvious structural change observed after enzyme immobilization, nanomatrix-induced diffusional limitation most likely caused the low reaction rates. These results demonstrate that the diffusional limitation induced by the aggregation of carbon nanoparticles cannot be ignored because it can lead to increased reaction times, low efficiency, and high economic costs. Furthermore, this problem is exacerbated when low concentrations of environmental contaminants are used.