Non-Invasive High-Throughput Metrology of Functionalized Graphene Sheets

作者:Ghazinejad Maziar*; Kyle Jennifer Reiber; Guo Shirui; Pleskot Dennis; Bao Duoduo; Vullev Valentine I; Ozkan Mihrimah; Ozkan Cengiz S
来源:Advanced Functional Materials, 2012, 22(21): 4519-4525.
DOI:10.1002/adfm.201200434

摘要

The utilization of fluorescence quenching microscopy (FQM) for quick visualization of chemical functionalization in relatively large regions of graphene, grown via chemical vapor deposition (CVD), is discussed. Through reactive ion plasma etching, patterns of p-type CVD-grown graphene functionalized with fluorine are generated. 4-(dicyanomethylene)-2-methyl-6-(4-dimethylaminostyryl)-4H-pyran (DCM) is used as the fluorescent agent. The emission of DCM is quenched to a different extent by fluorinated and pristine graphene, which provides the fluorescence-imaging contrast essential for this metrology. To probe the functionalized surface patterns with DCM, the dye is dispersed in polymethylmethacrylate (PMMA) then the graphene surface is coated, forming a 30-nm-thick DCM-PMMA layer. Fluorescence images of dye-coated graphene distinctly reveal the difference between the chemically treated and as-grown regions. The pristine graphene quenches the DCM emission more efficiently than the fluorinated graphene. Therefore, the regions with pristine graphene appear darker on the fluorescence images than the regions with fluorinated graphene, enabling large-scale mapping of the functionalized regions in CVD grown graphene sheets Due to its simplicity and consistent results, FQM is now poised for widespread adoption by graphene manufacturers as a basis for facile and high throughput metrology of large-scale graphene sheets.

  • 出版日期2012-11-7