摘要

The study proposes an investigation strategy to identify sensitive, robust and reliable chemical markers of hazelnut roasting. A fully-automated and validated analytical method, based on Headspace Solid Phase Microextraction (HS-SPME) coupled with Gas Chromatography-Mass Spectrometric detection (GC-MS), for effective off-line monitoring of changes in the volatile profile of high-quality hazelnuts was developed. Samples from two different harvests were submitted to roasting, following different time/temperature protocols and different technologies, enabling chemical changes to be correlated with technological processing and sensory quality. Chemical indices, expressed as analyte response ratio, were define%26apos;d and their trend observed across roasting profiles. Reliability and robustness of chemical indices were also evaluated, in view of their application to on-line monitoring with Mass Spectrometry-based electronic nose technology (MS-nose). Experiments, simulating on-line chemical characterisation of the volatile fraction, were performed through a fully-automated system. The results confirmed: (a) the effectiveness of single process indicators of roasting selected by the separative method (5-methylfurfural, 1 (H)-pyrrole, furfuryl alcohol, 1(H)-pyrrole-2-carboxaldehyde, 1-hydroxy-2-propanone, dihydro-2(3H)-furanone, 5-methyl-(E)-2-hepten-4-one, acetic acid, pyridine, furfural, pyrazine, and several alkyl-pyrazines); and, (b) the reliability of proposed chemical indices: 5-methylfurfural/2,5-dimethylpyrazine, 5-methylfurfural/2-methylpyrazine, 2,5-dimethylpyrazine/2,3-dimethylpyrazine; these maintained a consistent trend versus harvest and sampling/analysis technology.

  • 出版日期2013-5-15