摘要

Human chorionic gonadotropin (hCG) has been regarded as a biomarker for the diagnosis of pregnancy and some cancers. Because the currently used methods (e.g., disposable Point of Care Testing (POCT) device) for hCG detection require the use of many less stable antibodies, simple and cost-effective methods for the sensitive and selective detection of hCG have always been desired. In this work, we have developed a graphene oxide (GO)-based fluorescent platform for the detection of hCG using a fluorescein isothiocyanate (FITC)-labeled hCG-specific binding peptide aptamer (denoted as FITC-PPLRINRHILTR) as the probe, which can be manufactured cheaply and consistently. Specifically, FITC-PPLRINRHILTR adsorbed onto the surface of GO via electrostatic interaction showed a poor fluorescence signal. The specific binding of hCG to FITC-PPLRINRHILTR resulted in the release of the peptide from the GO surface. As a result, an enhanced fluorescence signal was observed. The fluorescence intensity was directly proportional to the hCG concentration in the range of 0.05-20 IU/mL. The detection limit was found to be 20 mIU/mL. The amenability of the strategy to hCG analysis in biological fluids was demonstrated by assaying hCG in the urine samples.